

Fountain Hills Photography Club Information Series

> Bruce Boyce 9/2/14

Warning : Be Aware that Some HyperFocal Distance (HFD) Calculators on the Web will give you misleading Hyperfocal Distance and DOF values

Disclaimer : Internet HFD calculators have the math right; I'm questioning the validity of using an outdated criterion for acceptable sharpness

3 Uses of HyperFocal Distance (HFD)

3. If you focus on infinity, objects from HFD to infinity will be in focus

What is "Acceptable" Blur?

- The "Circle of Confusion" (CoC) defines how much defocus blur is acceptable
 - In the "old days", it was 30 microns (film & typical lenses)
 - 30 microns is still used in Hyperfocal tables found on the Internet today
- For digital cameras, the CoC is now determined by the sensor pixel size (good lenses are much better than 30 years ago)
- Hyperfocal distance calculators need to be reformulated to suitably calculate CoC for digital cameras

What is "Acceptable" Blur?

- Thus the "Circle of Confusion" should be computed as a factor times the sensor pixel size
 - For example ; a Nikon D610 has 6 micron pixels
 - If CoC = acceptable 2 full pixels of blur, then
 CoC = 12 microns
- Why does this matter?
 - Achieving a Depth Of Field (DOF) is tougher with today's cameras because of better image quality (amount of acceptable blur is down)
 - If you ignore this, then you likely will be disappointed in the sharpness of portions of your images
- Lets look at some pictures

Let's Look at some Pictures

- Pictures taken of 4 Peaks, for different numbers of pixels of allowed defocus blur (5, 3, 2, 1, 0 pixels)
 - Nikon D610 with set at FL = 120 mm, f/8
 - Focus camera on selected HFDs, take pics of 4 Peaks
- Look for point of diminishing return on improved far field image sharpness

Images of 4 Peaks Taken For 5, 3, 1 and 0 Pixels of Blur

Clearly, 5 Pixels of Blur is Too Much

Images of 4 Peaks Taken For 3, 2, 1 and 0 Pixels of Blur

Conclusion : Allow ≈ 2 Pixels of Blur

Using a Hyperfocal Distance Calculator - 1

• Using the "Old" CoC of 0.030

DOFMaster graphic

 Digital Camera DOF and Hyperfocal Distance
 Calculator on left is reformulated for digital cameras to define CoC (acceptable blur) as a number of pixels

Using a Hyperfocal Distance Calculator - 2 • Using "New" CoC of 2 pixels

- "New" CoC assumption changes HFD and DOF
- Benefit is that at edge of DOF, objects will be in focus

I Looked at 3 HyperFocal Distance (HFD) Calculators Currently Found on the Internet

Two were found to be using the old value of CoC = 0.030 mm

One asks you to manually enter your camera's CoC value

PanoHelp, The One Website That Asks You to enter CoC

http://www.panohelp.com/hyperfocaldistance.html

- Only website I found that asks <u>you</u> to enter a CoC value
- To use this site, know your pixel size, calculate your CoC, and enter it manually

Summary - 1

- Beware of HFD calculators on the internet using outdated CoC values
- Outdated calculators will compute a hyperfocal distance that is too small & DOF values that are too large, resulting in images with unplanned blur
- You can use PanoHelp; manually enter digital CoC
 - Digital CoC = #pxlsofblur x pixel size [in mm]
 - Using a HFD calculator and with the right CoC assumption, you will have
 - Sharp images within DOF, but you will have ...
 - A harder time keeping foreground objects in focus along with objects at or near infinity (need higher f/no and/or shorter EFL)

Summary - 2

 One convenient way to use HFD in the field is to use a table of HFD vs. focal length and f/no for each camera and # pixels of allowable blur.

Hyperfocal Distance (HFD) [ft]											
Camera =	D600	f/no									
# pxl Bl =	2.00	1.4	2	2.8	4	5.6	8	11	16	22	
	14	38.4	26.9	19.2	13.4	9.6	6.7	4.9	3.4	2.4	
	24	112.9	79.0	56.4	39.5	28.2	19.8	14.4	9.9	7.2	
	35	240.0	168.0	120.0	84.0	60.0	42.0	30.5	21.0	15.3	
focal	50	489.9	342.9	244.9	171.4	122.5	85.7	62.3	42.9	31.2	
length [mm]	80	1254.0	877.8	627.0	438.9	313.5	219.5	159.6	109.7	79.8	
	120	2821.6	1975.1	1410.8	987.5	705.4	493.8	359.1	246.9	179.6	
	200	7837.6	5486.4	3918.8	2743.2	1959.4	1371.6	997.5	685.8	498.8	
	300	17634.7	12344.3	8817.4	6172.1	4408.7	3086.1	2244.4	1543.0	1122.2	
	450	39678.1	27774.7	19839.0	13887.3	9919.5	6943.7	5049.9	3471.8	2525.0	

- Is that all you need to know to get optimal focus across your images?
- No see next page

Doing AF Micro-Adjust on your Camera – Lens Pairs

- To take full advantage of your digital camera with lens, be sure it is in perfect focus.
- Fact : Any high end camera and any lens can individually meet manufacturer specified tolerances for assembly quality, but together they often do <u>not</u> achieve optimal focus.
 - Tolerance buildup for any specific combination of camera and lens can work against achieving perfect focus
- Camera manufacturers' solution is to provide the capability to save a defocus calibration constant for each lens in the camera (for high end cameras only).

Which cameras have the AF Micro Adjustment?

Updated Apr 13, 2013

Canon	Nikon	Sony	Pentax
 1Dx 1DsMk3 1DMk3 1DMk4 5DMk2 5DMk3 7D 6D 50D 	 D4 D3 D3x D3s D300 D300s D600 D700 D800 D800E D7000 	 A900 A850 SLT-A77 SLT-99 Olympus E-30 E-620 E-5 	 K20D K200D K200D K-5 K7D 645D

Canon, Sony : AF Micro Adjustment Nikon : AF Fine Tune Olympus : AF Focus Adjust Pentax : AF Fine Adjustment

http://michaeltap esdesign.com/

Focus Display Ruler showing back-focus

16

showing perfect-focus

Before Fine Tune Adjustment

After Fine Tune Adjustment

Focus Display Ruler showing back-focus Focus Display Ruler showing perfect-focus